THE RENNER-TELLER AND JAHN-TELLER EFFECTS IN PROTOTYPICAL MOLECULAR CATIONS SUBJECT TO A VERY LARGE SPIN-ORBIT COUPLING

<u>BÉRENGER GANS</u>, MONIKA GRÜTTER and FRÉDÉRIC MERKT, Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland.

PFI-ZEKE photoelectron spectra of the $X^+ {}^2\Pi \leftarrow X {}^1\Sigma^+$ transition of HC_2I and of the $\tilde{X}^+ {}^2E_{3/2} \leftarrow \tilde{X} {}^1A_1$ transition of CH_3I have been recorded at a resolution sufficiently high to observe, at least partially, their rotational structure. The spin-rovibronic energy-level structures of HC_2I^+ and CH_3I^+ could be determined at low energies and enabled us to study the Renner-Teller and Jahn-Teller effects in molecular cations subject to a very large spin-orbit coupling with unprecedented details.

In the case of HC₂I, the nominally forbidden 5_0^1 band has been observed in addition to the origin band and allowed us to determine a splitting of 2 cm⁻¹ between the two Renner-Teller components of the 5^1 vibrational level of the cation. In the case of CH₃I, the rotational structure of the origin and of the 2_0^1 and 3_0^1 bands are dominated by satellite bands of spin-rovibronic origin^{*a*}. The 5_0^1 and 6_0^1 bands reveal an additional splitting corresponding to the separation between the two Jahn-Teller components of j = 1/2 and j = 3/2symmetry of the 5^1 and 6^1 levels of the cation^{*b*}.

^aM. Grütter, J.M. Michaud and F. Merkt, J. Chem. Phys. 134, 054308 (2011).

^bT.A. Barckholtz and T.A. Miller, Int. Rev. Phys. Chem. 17 (4), 435 (1998).