INRARED SPECTROSCOPY AND TUNNELING DYNAMICS OF THE VINYL RADICAL IN ⁴He NANODROPLETS

PAUL L. RASTON, TAO LIANG, <u>EMMANUEL I. OBI</u>, and GARY E. DOUBERLY, *Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA*.

The vinyl radical has been trapped in ⁴He nanodroplets and probed with infrared laser spectroscopy in the CH stretch region between 2850 and 3200 cm⁻¹. The assigned band origins for the CH₂ symmetric (ν_3), CH₂ antisymmetric (ν_2), and lone α -CH stretch (ν_1) vibrations are in good agreement with previously reported full-dimensional vibrational configuration interaction calculations.^{*a*} For all three bands, *a*-type and *b*-type transitions are observed from the lowest symmetry allowed roconvibrational state of each nuclear spin isomer, which allows for a determination of the tunneling splittings in both the ground and excited vibrational levels. Comparisons to gas phase millimeter-wave rotation-tunneling^{*b*} and high-resolution jet-cooled infrared spectra^{*c*} reveal that the effect of the ⁴He solvent is to reduce the ground and ν_3 excited state tunneling splittings by $\approx 20\%$. This solvent-induced modification of the tunneling dynamics can be reasonably accounted for by assuming either an $\approx 2.5\%$ increase in the effective barrier height along the tunneling coordinate or an $\approx 5\%$ increase in the effective reduced mass of the tunneling particles.

^aA. R. Sharma, B. J. Braams, S. Carter, B. C. Shepler, and J. M. Bowman, J. Chem. Phys. 130, 174301 2009

^bK. Tanaka, M. Toshimitsu, K. Harada, and T. Tanaka, J. Chem. Phys. 120, 3604 2004

^cF. Dong, M. Roberts, and D. J. Nesbitt, J. Chem. Phys. 128, 044305 (2008)