VIBRONIC ANALYSIS OF THE $\tilde{A}^2 E''$ STATE OF NO₃ RADICAL

<u>TERRANCE J. CODD</u>, MOURAD ROUDJANE, MING-WEI CHEN^a, and TERRY A. MILLER, *Laser Spectroscopy Facility, The Ohio State University, Columbus, Ohio 43210.*

The nitrate radical is a key reactant in atmospheric chemistry leading to the formation of acid rain and is the primary oxidant in the night sky. The $\tilde{A}^2 E''$ state of NO₃ is doubly degenerate and is therefore subject to Jahn-Teller (JT) coupling through the degenerate in-plane stretch and bend modes (ν_3 and ν_4 respectively). We have taken a moderate resolution CRDS spectrum of the $\tilde{A}^2 E'' - \tilde{X}^2 A'_2$ transition of the NO₃ radical under jet-cooled conditions. We resolve ~ 20 vibronic transitions and are able to assign many using an independent anharmonic oscillator model as was presented previously.^b In order to gain a deeper understanding of the nature of the JT effect in this electronic state we have performed a vibronic analysis including linear and quadratic JT coupling terms for ν_3 and ν_4 and possible bilinear coupling between the totally symmetric stretch, ν_1 , and ν_4 . We conclude that the JT coupling in ν_4 is quite weak. Satisfactory spectral fits can be obtained assuming weak JT coupling for ν_3 also, though there is some evidence of strong JT coupling for ν_3 and the strengths and weaknesses of each case are discussed.

^aPresent address: University of Illinois at Urbana-Champaign, Urbana, IL 61801

^bCodd, T. et al. 67th Int. Symp. Molec. Spec. (2012)