DISPERSED FLUORESCENCE SPECTROSCOPY OF THE $\tilde{B} \, {}^{2}E' - \tilde{X} \, {}^{2}A'_{2}$ TRANSITION OF JET COOLED 14 NO₃ and 15 NO₃

<u>MASARU FUKUSHIMA</u> and TAKASHI ISHIWATA, Faculty of Information Sciences, Hiroshima City University, Asa-Minami, Hiroshima 731-3194, Japan.

We have generated NO₃ in supersonic free jet expansions and observed laser induced fluorescence (LIF) of the $\tilde{B}^2 E' - \tilde{X}^2 A'_2$ transition. We have measured LIF excitation spectra and dispersed fluorescence (DF) spectra from the single vibronic levels (SVL's) of the $\tilde{B}^2 E'$ state of ¹⁴NO₃ and ¹⁵NO₃. The vibrational structure of the $\tilde{X}^2 A'_2$ state has been analyzed by comparing the vibrational structures of the DF spectra of the two isotopomers. The 1,053 cm⁻¹ band of ¹⁴NO₃ is observed as two bands at 1,039 and 1,053 cm⁻¹ with an intensity ratio of 4 : 5, respectively, for ¹⁵NO₃, which are observed in the DF spectra with our standard resolution (~ 7 cm⁻¹ in FWHM). Higher resolution measurements (~ 2 cm⁻¹ in FWHM) of the DF spectra show that the 1,053 cm⁻¹ band of ¹⁴NO₃ is also observed as two bands at 1,051 and 1,056 cm⁻¹ with an intensity ratio of 5 : 3, respectively. The 1,051 cm⁻¹ band is attributed to be the ν_1 (a_1 ') fundamental, because of its little isotope shift. There are two possibilities for another band, the band at 1,056 and 1,038 cm⁻¹ for ¹⁴NO₃ and ¹⁵NO₃, respectively; (1) the ν_3 (e') fundamental band^a, and (2) the $\nu_2 + \nu_4$ (a''_2 and e', respectively) combination band. If this is the case (1), the ν_3 band should be observed in IR spectrum, but it has yet to be observed. If (2), the intensity must be stolen from the $\tilde{B}^2 E' - \tilde{A}^2 E''$ transition through the ν_2 mode, the considerable transition moment of which has been predicted^b. A simple consideration for the vibronic coupling^c between the $\tilde{A}^2 E''$ and $\tilde{X}^2 A'_2$ states through the ν_2 mode can understand about 20 % of the combination band intensity to that of the ν_1 fundamental. The higher resolution measurements of the DF spectra also show that the 1,499 cm⁻¹ band of ¹⁴NO₃ is much stronger than the 1,492 cm⁻¹ band in the electronic spectrum, while the latter is the strongest band in the IR absorption spectrum^d.

^aJ. F. Stanton, J. Chem. Phys. 126, 134309 (2007).

^bJ. F. Stanton and M. Okumura, Phys. Chem. Chem. Phys. 11, 4742 (2009).

^cE. Hirota, K. Kawaguchi, T. Ishiwata, and I. Tanaka, J. Chem. Phys. 95, 771 (1991).

^dT. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Chem. Phys. 82, 2196 (1985).